
Q 

t 

N A S A  C R - 1 6 8  

II 

I 

PL 
U 

4 
c/) 

4 
z 

N 6 5  17000 

u 6 )  
4 

i 

I C A T E Q O R Y I  
(NASA C R  O R  T M X  OR AD N U M B E R 1  

NONLINEAR ANALYSIS OF 
PHYSICAL LIBRATIONS 
I .  New Formulation and Equilibrium Orientations 
Deduced From an Integral of Motion 

GPO PRICE $ 

OTS PRICE(S)  $ , / .  / 
by R. L. DzGncombe dnd I.  Micbelson 

Prepared under Grant No. NsG-561 by 
ILLINOIS INSTITUTE OF TECHNOLOGY 
Chicago, Ill. 

for 

Hard copy (HC) 

Microfiche (MF) , I 1 
. /  

N A T I O N A L  AERONAUTICS A N D  SPACE ADMINISTRATION WASHINGTON,  D.  C. FEBRUARY 1965 



NASA CR-168 

NONLINEAR ANALYSIS OF PHYSICAL LIBRATIONS 

I.  New Formulation and Equilibrium Orientations 

Deduced From an Integral of Motion 

By R. L. Duncombe and I. Michelson 

Distribution of this  report is provided in the interest of 
information exchange. Responsibility for the contents 
resides in the author or  organization that prepared it. 

Prepared under Grant  No. NsG-561 by 
ILLINOIS INSTITUTE OF TECHNOLOGY 

Chicago, Ill. 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Off ice of Technical  Services, Department of Commerce, 
Washington, D.C. 20230 -- Pr ice  $1.00 



i 

NONLINEAR A N A L Y S I S  OF P H Y S I C A L  LIBRATIONS 

I. IJew Formulation and Equi l ibr ium Or ien ta t ions  Deduced from an I n t e g r a l  
* 

of  blot i on  

R.L. Duncombe, U.S. Naval Observatory, Washington, D.C.  
I .  Michelson, I l l i n o i s  I n s t i t u t e  of  Technology, Chicago, I l l i n o i s  

I 

In t roduc t ion  Y 
/ S a t e l l i t e  o r i e n t a t i o n  i n  space i s  a f f ec t ed  by t h e  unequal a t t r a c t i o n s  

of i t s  p a r t s  toward t h e  d i s t a n t  c e n t r o i d  of i ts  pr imary,  which i s  t h e  , 

Ear th  both f o r  a r t i f i c i a l  s a t e l l i t e s  and f o r  t h e  Moon. I n  pas s ive  systems 

i 

I of  s a t e l l i t e  a t t i t u d e  c o n t r o l ,  t h e  r e s u l t a n t  t o rque  a t t r i b u t a b l e  t o  t h e  

g rad ien t  o f  g r a v i t y  f o r c e s  wi th in  t h e  sa te l l i t e  i s  of  dominant importance. 

Both Lagrange and Laplace gave t h e  t h e o r e t i c a l  b a s i s  f o r  d i scuss ion  of 

l s a t e l l i t e  r o t a t i o n s  i n  t h e i r  ana lyses  of lunar  l i b r a t i o n s !  ( R e f .  1, 2 ) .  i 
Hamiltonian methods and modern computer techniques permit  more accu ra t e  

c a l c u l a t i o n s  f o r  s a t e l l i t e s  of a r b i t r a r y  conf igu ra t ion  i n  gene ra l i zed  

o r b i t s .  With r e spec t  t o  luna r  l i b r a t i o n s  also, new i n s i g h t s  are provide  

on p e r s i s t e n t  d i f f i c u l t i e s  i n  t h e  c l a s s i c a l  t r ea tmen t .  k 
For more than  a hundred yea r s  c a r e f u l  measurements have been made, 

c h i e f l y  w i t h  equipment s p e c i a l l y  designed by Bessel, i n  o rde r  t o  eva lua te  

t h e  gross dynamic 'features o f  l una r  s t r u c t u r e  accord ing  t o  t h e  theo ry  

proposed by Laplace. The d i f f e r e n c e s  between p r i n c i p a l  moments of  i n e r t i a  

of t h e  Moon are represented  by a s i n g l e  parameter which has  been sought 

i n  t h i s  manner, b u t  which has  not  y e t  been w e l l  e s t a b l i s h e d .  It is  

l a r g e l y  for t h i s  reason  t h a t  Commission 1 7  of  t h e  I n t e r n a t i o n a l  Astronomical 

* 
Presen ted  a t  XVth I n t e r n a t i o n a l  As t ronau t i ca l  Congress, Warsaw, 
September 11, 1964. 



Union unanimously affirmed in 1948 the importance of the introduction of 

a rigorous method for the reduction of all accurriulated observations of 

physical lunar libration. Noting that this has not yet been achieved, 

bot11 Sh.T. Kliabibulliri and K. Koziel have recently endorsed that resolution 

(Ref. 3 ,  4). 

to the study of lunar librations since the time of Laplace has rested upon 

the analysis which he gave, the state of affairs just described is here 

taken to justify a critical review and revision of that time-honored 

theory. 

mthough virtually all of the effort which has been devoted 

Before considering a reformulation of that work, therefore, it is 

appropriate to indicate some basic features of Laplace's calculation which 

deserve to be ameliorated. Laplace recognized that the very small ampli- 

tudes of librational motion provide a valid basis of approximation in the 

neglect of powers and products of small quantities. In addition to these 

approximations which lead to a system of linear differential equations in 

a manner that is now familiar, Laplace also applied the same technique 

with regard to quantities that define the lunar orbit and lunar orientation 

in space. These include, for example, lunar orbit eccentricity (value 

0 . 0 5 5 ) ,  and the angle between lunar equatorial and orbital planes (value 

6' 44'), values not in fact so small as to justify the assumptions when 

an accurate theory is sought which is found to be sensitive to the values 

assigned to physical parameters. Other parameters now known with better 

precision and different from values available to Laplace, are likewise 

important to recognize; notable among these is the inclination of the 

lunar equator, as given by C.B. Watts in 1955, Ref. 5. The introduction 

of Hamiltonian methods in dynamics within the past century, together with 
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t i  the associated perturbation techniques, will also be seen to have far- 

reaching significance in the present problem; viewed by current standards, 

their omission in the past is recognized as a serious defect of the theory. 

Not unrelated to this is a prevalent ambiguity concerning the appropriate 

form of a principle of angular momentum, obscuring essential features of 

the motion; this point will be elaborated below. Finally it will be seen 

that the classical theory contains logical imperfections which hinder 

solution of the problem to determine the physical constants of libration, 

although these were of secondary importance in the calculations which 

Laplace made for the purpose of testing hypotheses on the primitive state 

of the Moon. 

With regard to artificial satellites of general configuration in 

elliptic orbits, moreover, it is clear that the special assumptions made 

by Laplace are entirely inappropriate, so that a fresh formulation of the 

dynamical theory is indispensible for an acceptable description of the 

motion. In the contemporary literature on satellite librations, it should 

be noted that the viewpoint adopted by V.V. Beletskii (Ref. 6), 

G . N .  Duboshin (Ref. 7), D.E. Okhotsimski (Ref. 8) and their co-workers is 

that of the more general nonlinear treatment of satellite motion, configu- 

rations and orbits being unrestricted. 

work from the present analysis is their u s e  of Euler's equations of rigid 

body motion without modification for relative motion; this feature will be 

analyzed below. 

An essential difference of their 

3 
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Reference Frames and Angular Coordinates  

It  i s  customary i n  d i scuss ions  of r o t a t i o n a l  motions of  Ear th  and 

Hoon, t o  employ a se t  of  r e fe rence  axes wi th  o r i g i n  l o c a t e d  a t  t h e  cen t ro id  

of  the body i n  ques t ion  and d i r e c t i o n s  p a r a l l e l  t o  t h e  t h r e e  p r i n c i p a l  

i n e r t i a  axes. Then products  of i n e r t i a  are a l l  ze ro ,  and t h e  p r i n c i p l e  

of angular momentum i s  expressed by t h e  se t  o f  t h r e e  d i f f e r e n t i a l  equat ions  

known by t h e  name of Euler .  

as an e x t e r n a l  fo rc ing ,  t h e  r e p r e s e n t a t i o n  being t h a t  suggested by t h e  

conception of  c e l e s t i a l  sphere ,  long f a m i l i a r  and u s e f u l  i n  astronomy. I n  

t h i s  fash ion  it i s  p o s s i b l e  t o  d i s c u s s ,  f o r  example, e i t h e r  t h e  r o t a t i o n a l  

motion of  Earth as inf luenced  by t h e  Moon, o r  t h a t  o f  Moon under in f luence  

o f  Earth,  t h e  formalism be ing  t h e  same i n  both cases .  Such was, i n  f ac t ,  

t h e  order  of development i n  Laplace ' s  "MQcanique CQl8ste"  and subsequent 

t r e a t i s e s  r e spec t  t h e  t r a d i t i o n  without  important  except ion .  

Re la t ive  motion between bodies  i s  accounted 

In modern times t h e r e  i s  no l ack  of awareness of t h e  p i t f a l l s  

encountered when t h e  c l a s s i c a l  laws of  mechanics are not  expressed 

r e l a t i v e  t o  an i n e r t i a l  r e f e rence  frame. Hence even f o r  t h e  d i scuss ion  

of Earth r o t a t i o n  as a f f e c t e d  only by Moon and Sun, it i s  r e a l i z e d  t h a t  

re ference  axes i n  motion wi th  Ear th  c e n t r o i d  cannot be t r e a t e d  s t r i c t l y  

as an i n e r t i a l  system -- cen t ro id  of Earth-Moon system i s  cons iderably  

removed from t h a t  of  Ear th  a lone ,  and t h e  h e l i o c e n t r i c  motion i tself  must 

sometimes be reckoned a l s o .  

motion be descr ibed as i f  i t s  cen t ro id  were f i x e d  relative t o  an  i n e r t i a l  

re fe rence  frame. 

by M. Nahas, t o  account f o r  e f f e c t s  o f  n o n - i n e r t i a l  r e f e r e n c e  frame i n  

dea l ing  with t i d a l  theory  (Ref. 9 ) .  

S t i l l  less a c c u r a t e l y  can Moon's r o t a t i o n a l  

The concept of  g r a v i t a t i n g  c e n t e r s  has been employed 

These n i c e t i e s  are of  no phys ica l  
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importance when effects of relative motion are adequately accountable in 

terms of external forces, but it is by no means clear that this has been 

shown in the analysis of lunar librations -- nor even that this procedure 
has the possibility of being sufficient in this regard. 

does not mention these questions at all. 

Laplace's discussion 

For the purposes of careful calculation, therefore, it is convenient 

that the principle of least action (Hamilton's principle) is established 

without reference to coordinate systems. The appropriate form of the 

principle of angular momentum in an arbitrarily moving reference frame is 

therefore assured when the relevant energies are expressed in terms of 

the coordinates of that reference frame. It will be seen in the next section 

that the Euler equations require modification when satellite librational 

motion is considered. Since significant consequences follow this fact, a 

detailed discussion and derivation are indicated. 

Of less fundamental interest is the use of an angle convention different 

from the traditional representation, motivated by the following consider- 

ations. (& the Hamiltonian fgEmuLation wbi.sh_-i-s asopted, there is the 
inherent advantage of having no requirement for limitation to small angular 

displacements, obviating the necessity for early recourqe to linearization 

approximations. Both as a means of assessing such approximations when and 

if they are later imposed (as they are in the traditional treatments of 

lunar librations) and also in the interest of generality for discussion of 

large amplitude motions of other satellites, the differential equations of 

- 

motion are written in the more complete and nonlinear form. Euler's 

angle convention is of course well suited to this purpose. But it is 

also desirable to have the possibility to discuss arbitrary small rotations, 

and here the Euler angles are less conve,nient. The reason is seen when it 
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i s  r e c a l l e d  t h a t  t h e  ordered sequence of r o t a t i o n s  i n  t h e  Euler  convention 

e n t a i l s  a r o t a t i o n  about one a x i s ,  followed by a second r o t a t i o n  about a 

perpcndicular  a x i s ,  and a f i n a l  r o t a t i o n  about t h e  f i r s t  a x i s .  

:ini:les a r e  a l l  sma l l ,  t h e  r e s u l t a n t  r o t a t i o n  about t h a t  a x i s  which i s  

pcrpendicular t o  both of  t h e  foregoing,  i s  s m a l l  t o  a higher  o r d e r  t han  

t h e  two angular  displacements themselves.  I n  o rde r  t o  r e p r e s e n t  a less 

r e s t r i c t i v e  r e s u l t a n t  r o t a t i o n ,  t h e  angles  being small, a more symmetric 

angle convention b e t t e r  s e rves  t h e  purpose. I n  t h e  convention adopted 

i n  the  p re sen t  d i scuss ion ,  t h i s  i s  accomplished by an ordered se t  of  t h r e e  

r o t a t i o n s ,  one about each of  t h r e e  mutually or thogonal  axes .  ( C f . ,  e.@;., Ref. 1 4 ) .  

When t h e s e  

S p e c i f i c a l l y ,  axes XI, X2, X3 are l o c a t e d  with o r i g i n  a t  s a t e l l i t e  

( h e r e a f t e r  simply c a l l e d  llMoonll) c e n t r o i d ,  such t h a t  XI, i s  normal t o  o r b i t  

Plane i n  d i r e c t  sense; X3 along t h e  l i n e  of  Earth and Moon c e n t r o i d s ,  

d i r ec t ed  away from Earth;  X2 completes a right-handed system, so t h a t  X2 

would be d i r e c t e d  oppos i t e  t o  o r b i t a l  v e l o c i t y  i f  t h e  o r b i t  were c i r c u l a r .  

The ordered sequence of  r o t a t i o n s  is given by ang le  a i n  t h e  p o s i t i v e  sense  

around axis XI, followed by B i n  t h e  p o s i t i v e  sense  around t h e  once-displaced 

a x i s  X2,  and f i n a l l y  by y i n  t h e  p o s i t i v e  sense  around t h e  twice-displaced 

a x i s  X 3 .  The composite r o t a t i o n  l o c a t e s  p r i n c i p a l  i n e r t i a  axes of  Moon, 

denoted by X I ,  x2, x 3 ,  r e s p e c t i v e l y .  The r o t a t i o n s  a r e  i l l u s t r a t e d  i n  

Fig.  1, where t h e  d i r e c t i o n  cos ines  f o r  t h e  coord ina te  t r ans fo rma t ions  are 

a l s o  shown i n  matr ix  form along wi th  e x p l i c i t  va lues  of t h e  d i r e c t i o n  

cosines as func t ions  of a ,  B, y .  

Earth-Moon c e n t r o i d  d i s t a n c e  is  denoted by R ,  t h e  d i r e c t i o n  of  t h e  

vec to r  being taken from Ear th  t o  Moon, i t s  magnitude be ing  r ep resen ted  by 

R .  The o r b i t a l  angular  v e l o c i t y  fi i s  p a r a l l e l  t o  t h e  a x i s  X1, i t s  

6 
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magnitude R (as well as R) being dependent on position in orbit (assumed 

planar and Keplerian) as given by the true anomaly. Distance from lunar 

centroid to an arbitrary mass point of the Moon is given by F, having 
Cartesian components referred to principal axes given by XI, x2, x3. 

Principal inertia moments about these axes are respectively denoted by A, 

B, C; these are subject to the inequalities 

for stable orientations corresponding to rotation angles a and f3 each in 

some neighborhood of zero. 

motion are denoted p ,  q, r, their vector resultant G. 
that these are expressed in terms of the angle-rates &, i, q ,  the direction 

Angular velocity components of librational 

It is readily shown 

cosices and the angle y by the formulas 

Lagrangian Function, Orbit Eccentricity Neglected 

It is useful to establish important features of the librational motion 
\ 

directly from the Lagrangian function, the required expressions being 

simplified by neglecting orbit eccentricity, although analogous deductions 

remain valid when this assumption is later relaxed. i For further simplicity 
in discussion of lunar rotation, Earth-centroid is treated as executing 

I ~ -., 

L “ - __- - ---- --.e” --- - - 

- B _.I 

---.*a---*̂ -rr--- 
---. 

a motion which qualifies it as appropriate location of an inertial reference 

frame. In this manner the non-inertial character of Moon-fixed axes is 

partially accounted and will be seen to introduce centrifugal couples due 

to the lunar motion while ignoring those caused by the annual motion of 

7 



E a r t h  ( t h e  neglec ted  terms can be shown t o  be dwarfed by t h e  terms which 

are r e t a i n e d ) .  

The v e l o c i t y  of  a po in t  d i s t a n t  r from luna r  cen t ro id  i s  then  given 

where Go i s  t h e  l i n e a r  v e l o c i t y  o f  l u n a r  c e n t r o i d  i n  i t s  o r b i t ,  g iven as 

t h e  outer  vec to r  product i n  t h e  express ion  

I t  i s  c l e a r  from ( 2 )  t h a t  t h e  absence o f  1 b r a t i o n a l  motion, c o r r e  ponding 

t o  i = 0 ,  i s  an o r b i t a l  motion wi th  r o t a t i o n  5. Whereas o r b i t a l  motion 

without r o t a t i o n  corresponds t o  

E + i = O ,  

and i s  a l t o g e t h e r  phys i ca l ly  p o s s i b l e ,  t h e  p re sen t  decomposition of t o t a l  

r o t a t i o n a l  motion i s  more convenient s i n c e  l i b r a t i o n a l  motion can be 

immediately i d e n t i f i e d  as i. 

d i r e c t i o n  XI, while  t h e  components p ,  q, r of  t h e  vec to r  i are p a r a l l e l  t o  

x1, x2, x3, r e s p e c t i v e l y .  

It i s  t o  be r e c a l l e d  t h a t  i s  i n  t h e  

The o r b i t a l  k i n e t i c  e n e r a  being cons t an t  f o r  c i r c u l a r  o r b i t ,  as 

w e l l  a s  R and R ,  t h e  p a r t  of  t h e  k i n e t i c  e n e r a  which a f f e c t s  t h e  

l i b r a t i o n a l  motion i s  conta ined  e n t i r e l y  i n  t h e  i n t e g r a l  over  a l l  mass 

elements dm, of  t h e  s c a l a r  product  of  t h e  r o t a t i o n a l  motion wi th  i t s e l f :  

* 
The magnitude of r i s  not  r equ i r ed  and w i l l  no t  be employed; hence t h e  
convent ional  symbol r f o r  one component o f  l i b r a t i o n a l  motion e n t a i l s  
no ambiguity. 
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T = 1/2J{(?2 + i) x ; ) . { ( Q  + i) x ;) dm . 
I n  i n t e g r a t e d  form t h i s  is  

( 3 )  A E C 
2 2 T = - (alR + P ) ~  + 5 (b lQ  + q)’ + - (c1R + r l2  

where a1 = cosBcosy 

b l  = -cosBsiny 

c1 = s i n 8  

and p ,  q ,  r a r e  given by (1). 

immediate: t h e  terms involv ing  R r ep resen t  o r b i t a l  c e n t r i f u g a l  energy,  

p ,  q ,  r t h a t  due t o  l i b r a t i o n a l  motion, and t h e  two s e p a r a t e  l i m i t i n g  cases  

each y i e l d  va lues  t h a t  are recognizable .  The o r b i t a l  c e n t r i f u g a l  terms 

rep resen t  t h e  r e l a t i v e  motion of Ear th  and Moon and a r e  seen i n  ( 3 )  t o  

e n t a i l ,  i n  add i t ion  t o  terms p ropor t iona l  t o  n2 and independent of  l i b r a -  

I n t e r p r e t a t i o n  of  each t e r m  i n  ( 3 )  i s  

t i o n a l  motion p ,  q ,  r, a l s o  terms such as AalRp. Hence al though p ,  q, r 

are homogeneous func t ions  of degree u n i t y  i n  t h e  angle  rates a ,  8 ,  y ,  it 

i s  c l e a r  t h a t  t h e  k i n e t i c  energy i s  not  a homogeneous func t ion  of t h e s e  

v a r i a b l e s ,  and a l s o  t h a t  c e n t r i f u g a l  e f f e c t s  cannot be e n t i r e l y  separa ted  

from l i b r a t i o n a l  motion. This s epa ra t ion  i s  at tempted i n  t h e  c l a s s i c a l  

t rea tment  of l i b r a t i o n s ,  t h e  energy of  motion being w r i t t e n  without  t h e  

%terms ( s e e ,  e . g . ,  T isserand ,  Ref. 10 ,  p .  3741, a l l  e f f e c t s  of r e l a t i v e  

motion be ing  r e f e r r e d  t o  a p o t e n t i a l ,  t o  be examined i n  d e t a i l  below. 

. . .  

The k i n e t i c  energy r e f e r r e d  t o  axes moving with Moon c e n t r o i d  i s  g iven  

by terms p ropor t iona l  t o  p 2 ,  q2, r2 a lone ;  the  t ransformat ion  of ene rg ie s  

i n d i c a t e d  by ( 3 )  f o r  an Earth-centered re ference  frame i s  i n  accord  wi th  

textbook demonstrat ions ( s e e ,  e . g . ,  Landau & L i f s h i t z ,  Ref. 11, p. 18).  
* 

The subsequent d i scuss ion  w i l l  show what consequences fo l low t h e  r e t e n t i o n  

of c e n t r i f u g a l  terms i n  ( 3 ) .  A t  t h i s  po in t  it i s  noted t h a t  t h e  k i n e t i c  

The two terms i n  equat ion ( 7 )  which a r e  due t o  t h e  r e l a t i v e  motion are 
a l s o  found i n  t h e  a n a l y s i s  of t i d a l  and o ther  dynamical t h e o r i e s ;  a 
c l o s e  p a r a l l e l  i s  found i n  Ref. 15. 

* 
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energy, conta in ing  as it does terms p ropor t iona l  t o  t h e  f i r s t  power of 

angle  r a t e s  a ,  B, y ,  may be regarded as similar t o  c e r t a i n  Gyroscopic c a s e s ;  

systems with energ ies  of  t h i s  form a r e  a l s o  sometimes terms ' 'unnatural" .  

. . .  

Recognizing t h e  co r rec tness  i n  p r i n c i p l e  of  t h e  c e n t r i f u & a l  terms i n  

( 3 ) ,  t h e i r  importance i n  p a r t i c u l a r  cases  depends on how l a r g e  t h e  dynamic 

consequences a r e ,  compared with o t h e r  terms. For r o t a t i o n a l  motions a t  

considerable  speed,  t h e  components of are so much g r e a t e r  t han  fi t h a t  

t h e  l a t t e r  may be neglec ted  -- t h i s  i s  ev iden t ly  t h e  case  f o r  gyroscopes 

and a wide c l a s s  of o t h e r  motions. The d i s t i n c t i v e  f e a t u r e  o f  l i b r a t i o n a l  

motions, on t h e  o t h e r  hand, i s  t h e  smallness  o f  t h e s e  terms. The l u n a r  

l i b r a t i o n s ,  i n  f a c t ,  are c l o s e l y  desc r ibed  by t h e  so-ca l led  C a s s i n i ' s  

Three L a w s ,  according t o  which t h e s e  e f f e c t s  are e x a c t l y  zero ;  t h e o r e t i c a l  

s t u d i e s  of  t h e  l u n a r  l i b r a t i o n s  are concerned wi th  p r e c i s e l y  t h e  a c t u a l  

depar tures  from zero of t h e  v e l o c i t i e s  p ,  q ,  r .  Even in2 the  l i m i t i n g  case  

p = q = r = 0, t h e  importance of  t h e  R terms depends on t h e  magnitude of 

t h e  "ex terna l"  fo rces  which, i f  much g r e a t e r ,  w i l l  determine t h e  l i b r a t i o n a l  

conf igura t ion  almost without  r ega rd  t o  t h e  c e n t r i f u g a l  terms. 

seen a t  once, however, t h a t  when t h e  p r i n c i p a l  fo rces  are those  due t o  

Ear th  a t t r a c t i o n ,  as i n  t h e  case  of  l u n a r  l i b r a t i o n s ,  t h e  two sets of  terms 

are of exac t ly  t h e  same orde r  of  magnitude; t hen  C a s s i n i ' s  l a w s  desc r ibe  

t h e  equi l ibr ium e s t a b l i s h e d  by t h e  ba lance  of g r a v i t a t i o n a l  and c e n t r i f u g a l  

couples .  

energy i s  a func t ion  o f  t h e  angle  rates a ,  B ,  y and a l s o ,  t h e  ang le s  them- 

se lves ,  which determine t h e  d i r e c t i o n  cos ines  a1, b l ,  c1. 

It w i l l  be  

I n  any case  it i s  u s e f u l  t o  observe from ( 3 )  t h a t  t h e  k i n e t i c  
. . .  

The p o t e n t i a l  energy may be w r i t t e n  t o  a s a t i s f a c t o r y  degree of approxi-  

mation as t h e  sum of a term i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  Earth-Moon 

10 



." 
d i s t ance  R ,  p lus  another  involving the  t h i r d  p0ue.r of  t h e  same d i s t a n c e  

and t h e  moment of i n e r t i a  d i f f e rences .  This g ives  

where K denotes  t h e  product of  Ear th  mass by t h e  cons t an t  of g r a v i t a t i o n a l  

a t t r a c t i o n  and I i s  t h e  moment of i n e r t i a  of t h e  Moon about t h e  Earth-Moon 

l i n e  of  cen t ro ids .  According t o  a well-known formula t h i s  g ives  

I = A a 3  + Bb3 + Cc3 

where 8 3 ,  b3,  c3 a r e  ind ica t ed  i n  F ig .  1 and have t h e  va lues  

a3 = s inas iny -  cosasinBcosy 

b3 = sinacosy + cosasinbsiny 

c3 = cosacosf3 . 

Then t h e  p a r t s  of U which depend on a ,  B ,  y are 

Noting t h a t  t h e  fo rce  balance i n  c i r c u l a r  o r b i t  g ives  

and regrouping te rms ,  t h e  " t i d a l "  p o t e n t i a l  i s  expressed i n  terms of t h e  

asymmetries of luna r  mass d i s t r i b u t i o n  by the  formula 

U = $(A-B)(3bf-l)  + (A-C)(3~3-1))  . ( 4 )  

Equation ( h ) ,  sometimes r e f e r r e d  to as MacCullagh's formula,  may be compared 

wi th  t h e  form given,  f o r  example, .on p .  378 of Reference 10. 

noted t h a t  t h e  energy of lunar o r i e n t a t i o n ,  expressed by ( h ) ,  i s  a func t ion  

It is t o  be 

11 



of the angles a, 6, y; evidently it vanishes in the case of spherical (or 

other) symmetry for which A = B = C .  

The Lagrangian function L is given by the difference T-U given by ( 3 )  

and ( 4 ) ,  and this is a function of the angles a ,  8 ,  y and their derivatives, 

but it is not explicitly dependent on time. 

The Integral of Energy and Permanent Configurations 

The circumstance that the Lagrangian function does not depend explicitly 

on the time simplifies the expression of the principle of least action. 

the present case, having three coordinates a, B ,  y, the usual systcin of 

three second-order differential equations ( "Lagrange's Equations") is 

replaced by the single condition 

In 

ar, a~ a~ 
aa a f i  ay 

a - - - -+ B -r+ y I- - L = const. ( 5 )  

the derivative of which with respect to time i s  seen to give 

* d a L  3L * d a L  aL * d a L  3 L } = ,  
a { - y  - -} + B{-- - -} + y{--  - dt aa aa dt a4 as dt 3; ay 

. .  
and therefore yield the following interpretation. In the event that a, 4, 

y have an arbitrary set of values at any instant, the cocfficicnts of each 

of these terms in (6) must vanish separately. These are Lagrange's Equations, 

and in the particular case of rigid body motion, give the familiar set of 

equations associated with the name Euler. But if a = B = y = 0, all at 
. . .  

the same time, then equation (6) is equally satisfied without equating to 

zero each of the coefficients in brackets, i . e . ,  without recourse to 

Lagrange's equations in general, or to the Euler rigid-body equations in 

the case of librational motion. 
. . .  

Noting that Cassini's laws are very nearly true, i.e., that a = B = Y = 0 

to a good approximation, it is interesting to examine ( 5 )  in this case, 

12 
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since it then represents the complete clynamical requirement according to 

fiamilton's Principle. At this point the presence of centrifugal terms 

in (3) lcads to urifmiiliar consequences which are examined from the explicit 

form taken by ( 5 )  after assigning zero values to a,  8 ,  y .  This gives 
. . .  

when additive constant B+C-A and multiplicative constant Q2/2 have been 

assimilated on the right-hand side of (7). 

It is an instructive preliminary to more complete discussion, to 

consider ( 7 )  in simplified and special cases. 

terms corresponding to bl and cl leads to a positive definite function, 

owing to the circumstance that we have assumed 

The neglect of centrifugal 

A - B ' O  A - C > O .  

An extremum of (7) is verified for values a = 0 ,  B = 0 ,  and ( 7 )  is in this 

case simply the potential energy. 

It is in thia manner that workers who have adopted directly the 

Euler equations of rigid body motion, without accounting for relative 

motion, have concluded that vanishing values of a and @ correspond to 

attitude equilibrium with zero libration. Although one of the Euler 

equations corresponding to (6) then also suggests the requirement y = 0 ,  

it is found by directly examining the conditions for extremum that no 

restriction on y is in fact indicated: the conditions a = 6 = 0 alone 

assure that the potential energy is stationary. 

At this point it should be recalled that the inequalities A > B > C 

correspond to the stable "spoke" configuration in which the long axis of 



. 
I 

the satellite is dircicted toward Earth (the ''float" and "arrow" configurations 

obtained by right angle rotations do not possess the same property of 

stability); consequently it is sufficient to limit attention to values of 

a and B less than n / 2 .  

of the orientation angles for which orientation equilibrium is established, 

even when centrifugal terms are neglected. 

Hence a = 0, f.3 = 0 ,  y # 0 provides a set of values 

A more accurate representation is considered next for the case of 

symmetry about Earth-pointing direction: Then only the second 

term on the left in equation (7) determines the energy, which is again 

found to have a stationary value for a = 0 = 0 ,  

This "spoke1' orientation was identified as an equilibrium orientation by 

J.L. Synge (Ref. 12), who also set C = 0 to correspond to mass concentrated 

along the Earth-pointing axis. 

identified by Synge corresponding to a = $ = 0 is here seen to be generalized 

for finite inertia moment C: 

value to the Lagrangian function and (7). 

A = B. 

again remaining unrestricted. 

The isolated equilibrium orientation 

an infinity of values y also give an extreme 

In both of the preceding cases it is emphasized that the number of 

Earth-pointing equilibria is infinite for a finite body (i.e., C # 0); 

this fact escapes notice when the Euler equations are examined directly 

without recognizing that they are redundant for the case of librational 

equilibrium a = B = y = 0, as seen from (6) -- also when C . . .  
0 .  

Before turning to (7) in the general case, useful perspective is 

obtained by geometrical consideration. 

A = B, equation (7) is seen to represent one hyperbola in a plane with 

Cartesian coordinates c3, c1, for each value of the constant; one member 

Of this family of curves corresponds to an extremum of the function. 

Extremum requirements, expressed by equating to zero the derivatives of ( 7 )  

In the preceding example in which 
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~ * ’  with respect to a and 8 ,  provide an ellipse in the same plane; the inter- 

section determines unique values of c3 and c1, and hence extremizing values 

of a and B; the arbitrariness of y provides the infinity of orientations of 

equilibrium. 

It is also useful to recall that in the case of complete dynamical 

symmetry A = B = C, exemplified by a spherical shell, there is neither 

centrifugal nor gravitational couple, and any spatial orientation is a 

possible configuration of equilibrium: the number of these can be taken 

equal to the number of points on the surface of the unit sphere, and thought 

of as infinity-squared. The body with a single symmetry having been shown 

to possess a single infinity of equilibria, it is logical to inquire 

concerning the more general configuration. Equation (7) shows how the 

number of equilibrium orientations is then determined. 

For this purpose it is significant to note that there are in (4) four 

linearly independent functions b3, bl, c3, cl, each depending on three 

variables a, B ,  y. This may be regarded as the parametric representation, 

within a four-dimensional Euclidean manifold, of a sub-set which is a three- 

dimensional manifold. 

a sub-set which is a two-dimensional manifold, in generhl, each point of 

which represents an equilibrium or “permanent” configuration, establishing 

the fact of a double infinity of such configurations within orientation 

space of coordinates a, B, y .  This feature was foreshadowed in Ref. 13, 

and has been verified by direct calculations on high-speed computers of 

the U.S. Naval Observatory for values of parameters suggested by the 

lunar mass distribution as it is presently known. 

of the geometry of permanent configurations of equilibrium, for elliptic 

orbits, is intended for later presentation. 

The extremum requirement isolates within the latter 

A more complete discussion 



. 
1. 

Investigation of Effect of Refined IJunar Limb Corrections in the Figure of 

the Moon 

As part of the program for observational re-determination of the 

constants of the physical libration of the Moon being carried out by the 

Nautical Almanac Office, U . S .  Naval Observatory, it was desired to test the 

systematic effects on the reduction of introducing Watts' limb corrections 

as compared to Hayn's limb corrections which were employed by K. Koziel 

(Ref. 16). 

To make this test the Dorpat heliometer observations of 1884 and 1885 

were chosen. These observations have been completely discussed and rigorously 

reduced by K. Koziel. The reduced observations, as presented there, were 

modified by the introduction of Watts' limb corrections (Ref. 17) and a new 

solution made. 

equations and normal equations, a solution without limb corrections was also 

made. 

As a control on the process of reforming the conditional 

The results of the solution without limb corrections is shown at the 

top of Figure 2; A, 6 and h represent the selenographic longitude and 

latitude of M8sting A and its radius vector, i.e., its distance from the 

center of the Moon at the mean distance of the Moon from the Earth. I is 

the angle between the Moon's equator and the ecliptic, f = a/B is the 

mechanical ellipticity of the Moon, and R is the radius of the Moon. The 

insignificant differences from the same solution made by Koziel arise from 

assigning unit weight to all the observational equations, and to small 

differences in decimal accuracy of the computations, 

The results of the solution using Watts' limb corrections is shown 

in the lower left of Figure 2. 

solution using Hayn's limb corrections is shown to the right. 

For comparison, the results of the previous 
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The mean error of unit weight of the three solutions is shown in the 
9 

upper right portion of the figure. 

corrections is less than when using Hayn's limb corrections, there appear 

to be residual errors in t h e  observations themselves that are larger than 

the limb effects. 

While the error using Watts' limb 

~ 

The systematic shift in latitude introduced by Watts in forming his 

definitive datum surface is reflected in the latitude of Musting A resulting 

from the solution using his limb corrections. A slightly different value 

of the inclination of the Moon's equator to the ecliptic also is apparent. 

For lack of sufficient observational weight, no discussion of the 

derived value of f is given, nor has any attempt been made to solve for 

the coefficients of the free libration in longitude. 
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C o o r d i n a t e s  a n d  R o t a t i o n s  

I Ordered  R o t a t i o n  Sequence 

i )  a b o u t  X i  - a x i s  
i i )  a b o u t  ( d i s p l a c e d )  X2-axis 

iii) about ( d i s p l a c e d )  X3-axis 

DIHECTION COSINES, GENERAL ROTATION 

[ I J i  
a1 = cosBcosy 

bl = -cosBsiny 

c l  = s i n B  

a3 = s i n a s i n y  - cosas inBcosy  

b3 = s i n a c o s y  + cosas inf3s iny  

c 3  = cosaoosB 

Fig .  1. R e f e r e n c e  Axes,  R o t a t i o n a l  and Angle 

C o n v e n t i o n s ,  and Axis  T r a n s f o r m a t i o n s  



Solution Without Limb Corrections 

20 

x -5O 11' 56" 

6 -3' 10' 29" 

h 15' 32!'49 

I 1' 31' 9" 

f 0.70 

R 15' 32'!93 

f 15" p.e. 

f 16" 

f "57 

* 22" 

* .06 

f "03 

Mean Error of Unit Weight 

No. L.C. f ,8313 

Watts f .5302 

Hayn -. 6091 

Solution With Limb Corrections 

Watts 

h -5' 12' 

B - 3 O  11' 

h 15 

I 1' 31' 

f 0.65 

R 15 

14" 

24" 

32'! 52 

53" 

*lo" 

f10" 

*!I37 

f14" 

-5O 11' 

-3O 10' 

15 

lo 31' 

32!'87 

f.04 

f'!02 

0.71 

15' 32'!88 

Fig. 2. Solutions for Lunar Constants, Effects of Limb Corrections 

NASA-Langley, 1965 CR-168 


